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Dynamic Scoring in a Romer-style Economy

Dean Scrimgeour∗

Colgate University

February 6, 2010

Abstract

This paper explores the dynamic behavior of a Romer-style endogenous
growth model, analyzing how changes in tax rates affect government rev-
enue in the short run and the long run. I show that in this environment
lowering taxes on financial income is unlikely to stimulate tax revenue in
the long run and has modest effects on the tax base, contrary to some other
studies of the dynamic response of revenue to tax rates. Calibrations of the
model that suggest Laffer curve effects can be substantial require implausi-
bly low values for the elasticity of substitution between varieties of interme-
diate goods. For more plausible parameter values, I find that around 20%
of a tax cut would be self-financing due to an expansion in the tax base.

∗Contact: Dean Scrimgeour, Economics Department, Colgate University, 13 Oak Drive,
Hamilton, NY 13346. Email: dscrimgeour@colgate.edu. Thanks to Chad Jones, Lorenz Kueng,
Philippe Wingender, and seminar participants at Colgate University for comments.
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1. Introduction

Congressional Budget Office (2002) projects large fiscal deficits for most of the

21st century in the United States due to expansions in spending on Social Secu-

rity, Medicare, and Medicaid. The demographic trends driving much of these

spending expansions are common to many developed countries as the post

World War II baby boom generations age. As a consequence, similar fiscal con-

cerns prevail in other developed economies also (Carone and Costello (2006);

Faruqee and Mühleisen (2003)). Increasing tax revenues is one way to close the

budget deficit. What will be the effects if large tax increases are legislated?

This paper explores the consequences of changes in financial income tax

rates in a Romer (1990)-style endogenous growth model. In doing so, it adds

to the growing literature on dynamic revenue estimation and illustrates some

of the dynamic behavior of ideas-based growth models. Using a growth model

allows for the change in tax policy to have different effects in the short run and

the long run. An endogenous growth model allows some of these effects to op-

erate through advances in productivity. One might think that higher tax rates

reduce revenue both because they reduce the incentive to accumulate physical

capital and because they reduce the incentive to innovate.

In fact, the Laffer curve phenomenon is absent in the Romer model I cali-

brate for most plausible parameter values. A key parameter is �, the elasticity

of substitution between varieties of intermediate goods. For low values of �, the

elasticity of output with respect to the stock of ideas is very high, so incentives

to innovate have important effects on output and the tax base. Low values of

� generate Laffer curve effects at low tax rates. However, such low values of �

imply very large markups in the model, in contrast to observed markups.

Elasticities in the research and development production function also mat-

ter for the response of the economy to changes in tax rates. In particular, if the

returns to scale in labor are low, Laffer curve effects are less likely. With the

way the allocation of resources is decentralized, low returns to scale appear as
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externalities (“stepping on toes”). Workers respond to lower tax rates by switch-

ing into the R&D sector, but in doing so they hamper the productivity of other

workers. This curbs the response of the economy to a reduction in tax rates.

Traditional approaches to estimating the revenue effects of tax rate changes

focused on static behavioral responses – essentially the short-run response of

labor and capital income to a change in the tax rate.1 Fullerton (1982) argues

that Laffer curve effects (higher government revenue at lower tax rates) are un-

likely for labor income taxes due to low labor supply elasticities. (Malcomson

(1986) studies the same question and emphasizes the relevance of general equi-

librium effects.)

In spite of skepticism about the short-run revenue enhancing effects of tax

cuts in the 1980s, recent studies have considered the possibility that the long-

run effect of a tax cut is to expand the government’s tax collection. Economic

research has generally been skeptical of large short-run behavioral responses to

tax rate changes. By contrast, more economists believe that long-run responses

of labor supply and especially of capital supply may be large, potentially justify-

ing lower tax rates.2 As Mankiw and Weinzierl (2006) point out in the context of

the Ramsey model, the accumulation of capital means that a lower tax rate on

capital will ultimately increase the tax base, limiting the long-run reduction in

revenues from a tax rate reduction. Auerbach (1996) gives a general presenta-

tion of issues related to dynamic scoring. See also Auerbach and Kotlikoff (1987)

who study a wide range of issues related to dynamic aspects of fiscal policy.

A number of other studies have considered the dynamic effects of taxes on

government revenue in endogenous growth models. Those who have used AK

models to explore the effects of taxes include Barro and Sala-i Martin (1992);

Stokey and Rebelo (1995); Agell and Persson (2001); Ireland (1994); Bruce and

Turnovsky (1999). The results of the AK model are fairly straightforward to de-

1This issue gained prominence in the early 1980s when some claimed that the United States
had tax rates so high that lower tax rates would increase tax revenue. This hypothetical situation
was known as being on the wrong side of the Laffer Curve.

2A notable counterexample is Goolsbee (2000) who argues that a reduction in high-income
tax rates had large short-run effects but small long-run effects.
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velop. Production is proportional to capital, Y = AK, though individuals may

perceive this production function to be Y = ÃK�L1−�. Absent depreciation,

the real interest rate is r = �A. The growth rate of the economy is determined

from the consumption Euler equation: Ċ/C = �((1 − �v)�A − �), where � is

the intertemporal elasticity of substitution, � is the discount rate, and �v is the

tax rate on capital income. As the tax rate on capital income �v falls the steady-

state growth rate of the economy increases. Tax cuts therefore tradeoff current

revenue losses for future revenue gains.

In the AK model above, the optimal growth rate exceeds the growth rate in

the decentralized allocation. As such, the appropriate policy is to subsidize cap-

ital income, rather than taxing it.3 It is natural to think that lower taxes (at least

when such taxes are positive) would expand the tax base. In the model I discuss,

there are several distortions that make it uncertain, a priori, whether a decen-

tralized allocation will result in too much or too little investment in research

and development.

Others have used models in which growth is driven by the accumulation of

human capital, as in Lucas (1988). Examples include Novales and Ruiz (2002);

Pecorino (1995); De Hek (2006); Milesi-Ferretti (1998); Milesi-Ferretti and Roubini

(1998); Hendricks (1999). While some find that lower tax rates provide extensive

stimulus to the economy, others report more modest responses. For example,

Hendricks (1999) presents a life-cycle model with human capital accumulation.

In his model human capital accumulation drives the economy in the long run,

but lower tax rates do not generate large increases in the scale of the economy.

Another strand of the literature on the effects of taxation discusses the uses

of government revenue. For example, Jones et al. (1993, 1997) modify the clas-

sic Chamley (1986) and Judd (1985) result that the optimal tax rate on capital

income is zero. In their model the government uses tax revenue to provide pro-

ductive public goods. Cutting taxes means having to cut public services, which

3When there is no population growth or depreciation, the optimal subsidy to capital income,
financed by lump sum taxes, would be (1− �)/�.



DYNAMIC SCORING AND ENDOGENOUS GROWTH 5

may reduce output. Ferede (2008) follows a similar approach. In these papers,

a reduction in the tax rate may not be followed by large increases in the tax base

since the government has to reduce its investments in public infrastructure. For

example, while Mankiw and Weinzierl find that 50% of a tax cut on capital in-

come is self-financing, Ferede concludes that only 6% of the tax cut would be

self-financing if the tax cut meant the government had to cut back on produc-

tive spending. In a quantitative exercise below, I show that around 20% of a tax

cut is self-financing in a Romer-style model.

The AK model as described above relies on large spillovers from using cap-

ital to generate endogenous growth through capital accumulation as well as

being consistent with facts about the share of income paid to capital. Fur-

thermore, empirical evidence on the effect of the size of government on the

economy’s growth rate does not come down strongly in favor of such strong

scale effects (Easterly and Rebelo (1993); Mendoza et al. (1997); Jones (1995b)).

While this may be consistent with appropriately parametrized AK models, as

in Stokey and Rebelo (1995), it is also consistent with the model I present in

which tax rates do not affect the steady-state growth rate of the economy, but

may affect the steady-state level of activity.

The paper proceeds as follows. Section 2 presents the Romer-style model

with taxes on capital income and discusses the steady-state and transition dy-

namics in this model. Section 3 presents comparative dynamic responses of tax

revenue to tax rates. Section 4 concludes.

2. The Romer Model with Capital Income Taxes

2.1. The Economic Environment and Agents

The economic environment consists of three production sectors. Final goods

are produced using durable intermediate goods and labor. The intermediate

goods are produced using final output (in the form of capital) and designs.
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These designs come from the research and development sector, which uses la-

bor and previously developed designs in production, though existing designs

used in the R&D sector are not compensated in the decentralized allocation

considered here.

The production of new designs used for making intermediate goods pro-

ceeds according to

Ȧt = �A�t L
�
At, � < 1, � > 0, A0 > 0, � > 0 (1)

The intermediate goods sector uses capital together with designs to produce

differentiated intermediate inputs. One unit of capital produces one unit of the

intermediate good. Each intermediate goods producer owns the design used

in production. The measure of designs is At. Total production of intermediate

goods is determined by the size of the capital stock:

∫ At

0

xitdi = Kt (2)

Final output, which can be consumed or transformed into capital, is pro-

duced with intermediate inputs and labor

Yt =

(∫ At

0

x�itdi

)�/�
L1−�
Y t (3)

The decentralized equilibrium in this economy features solutions to the fol-

lowing problems.

Household Problem. The household problem is to choose time paths of ct

(consumption) and vt (financial assets) that maximize

∫ ∞
0

e−(�−n)t c
1−1/�
t − 1

1− 1/�
dt

taking the full time series of prices and taxes as given, and subject to the follow-
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ing constraints

v̇t = ((1− �v)rt − n)vt + wt − ct + trt, v0 > 0 (4)

lim
t→∞

vt exp

{
−
∫ t

0

((1− �v)rs − n)ds

}
≥ 0 NPG (5)

where v is assets per person, c is consumption per person, w is the wage rate, r

is the pre-tax return on assets, � discounts future utility, n is the growth rate of

population, tr are net transfers from the government, and �v is the tax rate for

asset income.4 The assets, v are claims on both physical capitalK and patented

designs A.

Final Goods Problem. The final goods sector is perfectly competitive. At each

point in time, firms demand labor and intermediate goods, taking wages and

intermediate goods prices as given, to maximize

(∫ At

0

x�itdi

)�/�
L1−�
Y t − wtLY t −

∫ At

0

pitxitdi (6)

Intermediate Goods Problem. Patent-holding firms in the intermediate goods

sector choose a price pit and quantity to produce x(pit) to maximize profits

x(pit)(pit − rt − �) (7)

Research and Development Problem. Firms in the R&D sector produce new

designs that intermediate goods firms use to produce new intermediate inputs.

There is free entry in this sector, but there are externalities. Firms perceive a

constant returns to scale production function, ignoring diminishing returns to

labor at the aggregate level in this sector. Increases in activity (LA) generate

something akin to congestion effects, lowering the marginal product of labor.

4I abstract from a menu of taxes that includes taxes on labor incomes and consumption.
Without a labor-leisure choice, these taxes do not distort allocations. Altering capital income
taxes may affect tax revenues gathered through the labor income and consumption taxes since
different levels of capital income tax imply different degrees of capital accumulation and pro-
duction. My analysis neglects these possible feedback effects.
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Firms sell their patented designs for price PAt. They demand labor, paid at the

economy-wide wage rate wt, maximizing profits

PAt�̄tLAt − wtLAt (8)

where �̄ = A�L�−1
A .

Government Budget. The government simply collects taxes and returns them

to households as lump sum transfers:

trt = �vrtvt (9)

In this model there is neither government consumption nor public goods pro-

vision.5 Households are Ricardian, so the timing of tax rebates is irrelevant to

the households’ decisions. Assuming the government rebates all revenues im-

mediately means that we do not have to keep track of the government’s asset

position.

2.2. Definition of Equilibrium

The decentralized equilibrium with taxes in this Romer economy is a time path

for quantities {ct, LY t, LAt, Lt, At, Kt, Yt, vt, {�it}Ati=0, {xit}
At
i=0, �̄t, trt}∞t=0 and prices

{PAt, {pit}Ati=0, wt, rt}∞t=0 such that for all t:

1. ct, vt solve the household problem

2. {xit}Ati=0 and LY t solve the final goods firm problem

3. {pit}Ati=0 and {�it}Ati=0 solve the intermediate goods firm problem

4. LAt solves the research and development firm problem

5. Yt =
(∫ At

0
x�itdi

)�/�
L1−�
Y t

5See Barro (1990); Jones et al. (1993); Ferede (2008) and others for models where the govern-
ment can provide productive public goods.
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6. At follows from equation (1)

7. Kt satisfies
∫ At

0
xitdi = Kt

8. �̄t satisfies the ideas production function: �̄t = A�t L
�−1
At

9. Asset arbitrage: rt = �it
PAt

+ ṖAt
PAt

10. rt clears the financial market: vtLt = Kt + PAtAt

11. wt clears the labor market: LY t + LAt = Lt

12. Lt = L0e
nt

13. trt satisfies the government budget constraint: trt = �vrtvt

Note that households are taxed on their income derived from assets. Finan-

cial income is derived from either physical capital or intellectual property (A).

Asset arbitrage implies that the returns to investing a dollar in each asset class

be the same. This is condition (9) in the definition of equilibrium above. In the

presence of taxes, this condition implies that capital gains from appreciating

prices of intellectual property are taxed. If only profits were taxed, the arbitrage

equation would be:

(1− �v)rt = (1− �v)
�it
PAt

+
˙PAt
PAt

,

and this would have different implications for the steady-state price of patented

ideas.

In fact, in the absence of depreciation, or if income from physical capital is

taxed without allowing for depreciation, a policy that taxes only dividend pay-

ments and not capital gains of patented technologies makes the composition

of the capital stock (i.e., the share of the overall capital stock that is physical

capital distinct from intellectual property) invariant to the financial income tax

rate.
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2.3. Balanced Growth Path

This section presents some properties of the balanced growth path for the econ-

omy. Consider first static aspects of the equilibrium allocation. Each interme-

diate goods producer faces the same problem, so they will produce the same

quantity x and sell it for the same price p. The profit � for each patent holder

will be the same and all patents will trade at the same price PA. Since the entire

stock of physical is divided among the intermediate goods producers

xit = xt =
Kt

At

and the price charged is a markup over marginal cost

pit = pt =
1

�
(rt + �)

so that the profit for each firm is6

�it = �t =
1− �
�

(rt + �)
Kt

At
= �(1− �) Yt

At
.

Note that � relates to the profit share. The share of final output (though not

of total income) paid out as pure profits is �(1− �). If profits actually represent

10% of final output and� is one-third, then the appropriate value for �would be

about 0.7. The gross markup is 1/�. So in order to match net markups of 10%, �

should be around 0.9. From this, I take 0.7 to 0.9 as a plausible range for values

of �.

As in Jones (1995a), the steady-state growth rate of A is given by7

gA =
�n

1− �
.

6Here we use the fact that rt + � = ��Yt/Kt, where � is the fraction of its marginal product
that capital is paid.

7I use gz to denote the balanced growth path growth rate of the variable z.
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Since output is equal to

Yt = A
� 1−�

�
t K�

t L
1−�
Y t

the growth rate of output in steady state is given by

gY = gK = n+
�

1− �
1− �
�

gA =

(
1 +

�

1− �
1− �
�

�

1− �

)
n

so that the growth rate of output and capital in steady state depends only on

structural parameters, not on investment rates or tax rates.8 In this model,

there is no tradeoff between the current level of tax revenue and the steady-

state growth rate of tax revenue as there is in the AK model.

From the capital accumulation equation

K̇t = Yt − Ct�Kt

we know that consumption grows at the same rate as output and capital in

steady state. Therefore, the consumption Euler equation determines the steady-

state interest rate: from the household problem, the growth rate of consump-

tion is

ċt/ct = �((1− �v)rt − �) (10)

→ gY − n (11)

⇒ r∗ =
�

1−�
1−�
�

gA
�

+ �

1− �v
(12)

Capital income taxes do not affect the balanced growth rate of consump-

tion. Higher tax rates raise the steady-state return to assets the household owns.

Since the marginal product of capital is decreasing in the amount of capital, this

means that the steady-state capital stock is lower. Similarly the stock of knowl-

8This is the distinguishing feature of semi-endogenous growth models. By contrast, first
generation endogenous growth models (Romer (1990); Grossman and Helpman (1991); Aghion
and Howitt (1992)) have strong scale effects so that the growth rate may be influenced by tax
rates. See Jones (1999) and Jones (2005) for more on this point.
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edge is also lower in a steady state with higher capital income taxes.

The fraction of labor allocated to the research and development sector is

consistent with integrated labor markets. The wage paid to researchers is equal

to the wage received by laborers producing final output. Therefore,

wt = PAt
Ȧt
LAt

= (1− �)
Yt
LY t

(13)

which implies that
sAt

1− sAt
=

PAtȦt
(1− �)Yt

. (14)

On the balanced growth path, asset arbitrage requiresPAt = �t
r∗−gPA

, where gPA =

g� = gY − gA. Consequently

s∗A
1− s∗A

=
�(1− �)gA

(1− �)(r∗ − (gY − gA))
≡  ∗. (15)

The steady-state share of labor allocated to research and development is

s∗A =
 ∗

1 +  ∗
=

�(1− �)gA
(1− �)(r∗ − (gY − gA)) + �(1− �)gA

. (16)

Of the terms in this equation, only the steady-state interest rate depends on

the tax rate applied to capital income. Since higher interest rates lower the

present value of future profits resulting from innovation, they reduce the price

of a patented idea. Lower values of patents discourage the research and devel-

opment required to develop new ideas, reducing sA.9

The production function for new ideas shows that on the balanced growth

path

A∗t =

[
�L�t s

∗�
A

gA

] 1
1−�

. (17)

Higher capital income taxes raise the interest rate and lower the fraction of

9Alternatively, higher tax rates cause less capital to be accumulated, raising its marginal
product and therefore the interest rate. It follows that the share of labor working in R&D is
lower the higher is the tax rate �v. As a result, the stock of knowledge is affected by �v.
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workers producing new ideas. Therefore the balanced growth path stock of

ideas is lower when tax rates are higher.

Along a balanced growth path, capital and output are determined from(
K

Y

)∗
=

��

r∗ + �
(18)

Y ∗t = A
∗ �
1−�

1−�
�

t

(
K

Y

)∗ �
1−�

(1− s∗A)Lt (19)

K∗t =

(
K

Y

)∗
Yt (20)

= A
∗ �
1−�

1−�
�

t

(
��

r∗ + �

)∗ 1
1−�

(1− s∗A)Lt. (21)

Increases in the financial income tax rate reduce A and K/Y but increase the

fraction of workers producing physical output, so there are competing effects of

capital income taxes on output. This mirrors the relationship between the op-

timal and equilibrium allocations in the Romer model. For some parametriza-

tions the equilibrium involves overinvestment in R&D, while in others there is

too little R&D (sA is too small).10 If their effect through labor market channels

is strong enough, higher capital income taxes could actually increase the size of

the stock of physical capital. and output See the calibration below for quanti-

tative results in which a lower tax increases the capital stock and output, even

though it diverts labor to the R&D sector.

The stock of assets includes both physical capital and patented ideas. The

total value of these assets on the balanced growth path is

V ∗t = K∗t + P ∗AtA
∗
t (22)

=

(
��

r∗ + �
+
�(1− �)
r∗ − gPA

)
Y ∗t (23)

10For more, see Jones and Williams (1998, 2000) for a discussion of the social returns to R&D.
Those papers discuss a related model that also includes a creative destruction distortion. Jones
(2005) shows how the socially optimal rates of investment relate to the decentralized allocation’s
rates of investment in a model that does not have the creative destruction distortion.
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so that the share of assets in the form of physical capital (versus patented ideas)

depends on the steady state interest rate, which in turn depends on the tax rate

on capital income.11

Since the value of innovations in the R&D sector are paid out to researchers

as wages, changes in the allocation of labor and of the price of new ideas can

affect the labor share of income. Note that total income in this model is Y +PAȦ.

Payments to labor arewL = (1−�)Y +PAȦ. A reduction in the tax rate on capital

income lowers the real interest rate and raises the value of output in the R&D

sector relative to the final goods sector. This in turn means the the labor share

of income rises.

Tax revenue for the government is �vr∗V ∗. Of this, the tax base is r∗V ∗. The

Laffer conjecture in this context is that a reduction in the tax rate will cause

the tax base to increase so much that the product of the two increases. Since a

reduction in the tax rate causes the real interest rate to be lower in steady state,

this would require a large increase in the value of assets.

11If � = 0 and � = �, then V ∗
t = �

Y ∗
t

r∗

(
r∗−�n
r∗−n

)
. In that case the asset structure of the econ-

omy depends on the growth rate of population and on the steady-state interest rate, which may
respond to capital income taxes. Assuming there is no population growth, the share of assets
that are physical capital is �, independent of �v. More generally, the effect of the population
growth rate on the composition of assets depends on other parameters in the model. If � = �,
then higher n causes the growth rate of the price of an idea to be higher. This lowers the current
price of a new idea and means more of the stock of assets will be physical capital. If � < � < 1
and � > 1 − �, entirely plausible values, it is possible for this effect to be reversed. For some
such combinations of parameters higher population growth lowers the growth rate of the price
of an idea, increasing its current price and the extent of investment in R&D.
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2.4. Transition Dynamics

I log-linearize the key equations of the model as follows.12 Define the vector 

as

t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1t

2t

3t

4t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log(Ct/Kt)

log(Ȳt/Kt)

log(sAt)

log( ¯̇At/At)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(24)

where Ȳ is the maximum output that could be obtained at a point in time, based

on setting sA equal to zero, and ¯̇A is the maximum rate of change of A that is

possible at a point in time, based on setting sA equal to one.13 I use maximum

output instead of actual output so that this variable is a genuine state variable

and is unable to jump. With this set-up there are two obvious state variables

and two control variables that correspond to the two key allocation decisions

in the model: to consume or invest, and to produce final output or to produce

ideas. Furthermore, each component of t is constant on the balanced growth

path, so ̇t will converge to zero. Therefore,

Yt = A
� 1−�

�
t K�

t L
1−�
t (1− sAt)1−� = Ȳt(1− sAt)1−� (25)

and
¯̇At = �A�t L

�
t = Ȧts

−�
At (26)

The limiting values of these variables are determined as follows. Equation

(16) determines the steady-state value ∗3 . Then ∗4 is equal to log(gA(s∗A)−�). The

12More details are in appendix A.
13Arnold (2006) analyzes the dynamics of this model with � = 1. He reduces the model to a

similar set of variables as I do here. The main differences are that one of his variables corre-
sponds roughly to PA rather than sA and the variable that represents the output-capital ratio
in his paper uses actual output rather than maximum output. Schmidt (2003) also discusses
transition dynamics in the Romer model.
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steady-state interest rate in equation (12) determines the steady-state capital

output ratio, which combined with s∗A determines ∗2 . Finally, C/K = Y/K −
K̇/K − � which determines ∗1 .

It is convenient to work with these four variables since they are each con-

stant on a balanced growth path. Two correspond roughly to the state variables

in the model (4 relates to the stock of knowledge, 2 to the capital stock), and

do not jump in response to shocks. By contrast, the other two correspond to

control variables (1 to the investment rate, and 3 to the intensity of research

and development efforts) and can jump. The dynamics of the four variables are

determined by two initial conditions (K0 and A0) and two endpoint conditions

(the limiting behavior of C and sA).

The rate of change of  is given by

̇t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ċt
Ct
− K̇t

Kt

˙̄Yt
Ȳt
− K̇t

Kt

˙sAt
sAt

� L̇t
Lt
− (1− �) Ȧt

At

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(27)

Equations for three elements of this vector are straightforward. The deriva-

tion of each equation is covered in the appendix. The growth rate of consump-

tion is given by the household’s Euler equation. The growth rate of the capital

stock comes from the capital accumulation equation. The growth rate of the

maximum growth rate of A is determined by the growth rate of A and of popu-

lation.

The growth rate of sAt is more complicated, and is based on the dynamics of

the labor market equilibrium condition in equation (14). This equation implies

that the rate of change of sA is influenced by the rate of change of PA, A, K, and

L. For example, if the price of patented ideas is rising over time then, all else

equal, the fraction of labor allocated to R&D will also be rising.
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For all the calibrations I applied, the log-linearized system of equations was

characterized by two negative and two positive eigenvalues so is saddlepath

stable. This is consistent with there being two state variables and two jump

variables (C and sA). Arnold (2006) shows that a slightly simpler version of this

model without taxes must have two negative and two positive eigenvalues.

3. Comparative Dynamics: Response to �v Changes

This section discusses the response of the economy in general and tax revenues

in particular when there is a change in the financial income tax rate. It shows

the long-run response of tax revenues to tax rates as well as transition paths for

a range of variables.

3.1. Short-run Response of Tax Revenue

In the Ramsey model, the interest rate at a point in time is determined by the

capital stock. Factor supplies are inelastic in the short-run, so the marginal

product of capital is a given. Therefore the elasticity of tax revenue with respect

to the capital income tax rate is equal to one in the Ramsey model in the short

run (Mankiw and Weinzierl (2006)).

In the Romer model, the marginal product of capital depends on the allo-

cation of labor between the two sectors. And even if the real interest rate were

not to jump in the R&D model, if the price of a patented idea jumps, then the

stock of assets whose income streams are taxed also jumps so that the elasticity

of tax revenue with respect to changes in the tax rate need not be one. For some

parametrizations, tax revenue jumps less than the percentage of the change in

the tax rate, while in other parametrizations it jumps more.
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3.2. Long-run Response of Tax Revenue

The long-run response of tax revenue to the tax rate on financial income de-

pends mainly on a small number of key parameters. First, �, which governs the

substitutability in production of different kinds of capital goods, has a particu-

larly important role. For low values of �, low tax rates are consistent with high

tax revenues, so there is a relevant Laffer curve effect. Evidence on the share

of income received as pure profits (returns to patents) and on markups suggest

that such values of � are implausible. For higher values of � (closer to 0.9 so that

markups are around 10%) suggest that tax revenues are maximized at tax rates

closer to 85%.14

Figure 1 shows steady-state tax revenue as a function of the tax rate for three

different values of �. For high values of � the long-run elasticity of output with

respect to A is low. As a consequence, lower tax rates do not raise govern-

ment revenue in general, even though they increase the stock of knowledge and

hence output. For lower values of �, tax revenue peaks as a function of the tax

rate at relatively moderate tax rates. Figure 2 shows the tax rates that maximize

tax revenue as a function of �.

Low values of � imply that a large share of income is accrued as pure profits.

In the model, profits are �(1− �) fraction of final output. If � is 1/3 and � is 0.3,

profits will be nearly twenty five percent of final output. In addition, the gross

markup charged by producers of the differentiated intermediate goods is 1/�,

so low values of � imply high markups. Evidence from Basu and Fernald (1997)

and Broda and Weinstein (2006) suggests that markups in practice are much

lower, perhaps around 10% to 20%, and profit shares are small.

Baseline parameter values used to generate these figures are reported in Ta-

ble 1. The parameters imply that around 10% of final output is paid out as pure

profits (�(1 − �) = 1
3
(1 − 0.7) = 0.1. Of the other parameters, most are stan-

dard. The exceptions are � and �. There is little empirical research to guide the

14By contrast, in the Ramsey model, tax revenues are maximized when �v = 1 − � where � is
the elasticity of ouptut with respect to capital.
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Figure 1: Steady-State Tax Revenue as a Function of the Tax Rate
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Notes: This graph plots steady-state tax revenue as a fraction of the maximum possible (over
various tax rates) steady-state tax revenue for the relevant set of parameters.

calibration of these parameters. In the model, the steady-state growth rate of

output per person is �
1−�

1−�
�

�
1−�n. Using the other parameter values from table

1, and assuming a steady-state growth rate of output per worker of 2%, this sug-

gests � ≈ 9(1 − �). A problem with this approach to calibrating � and � is that

the historical growth rate of output may not be close to the steady-state growth

rate (Jones (2002)).

The subsequent figures, 3(a) and 3(b), show steady-state output and con-

sumption as functions of the tax rate, again for different values of �. Since taxing

financial income does not correct the underlying distortions in this economy,

higher taxes are associated with lower output and consumption in the model,

at least for these calibrations. That is, the optimal tax rate is negative. A key

parameter here is �, which is set to 0.9 indicating large dynamic spillovers from

past research and development on present R&D productivity. Because of this
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Figure 2: Revenue Maximizing Tax Rates as a Function of �
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Table 1: Calibrated Values of Model Parameters

Parameter Meaning Calibrated Value

� Elasticity of Y w.r.t. K 1/3

� Related to Elasticity of Substitution 0.7

between Varieties of Capital

� Depreciation rate for physical capital 0.05

� Productivity in R&D 1

� Elasticity of Ȧ w.r.t. LA 0.7

� Elasticity of Ȧ w.r.t. A 0.9

� Discount rate 0.02

� Intertemporal elasticity of substitution 1

n Population growth rate 0.01
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Figure 3: Steady-State Output and Consumption
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(a) Steady-State Output as a Function of the Tax
Rate
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(b) Steady-State Consumption as a Function of
the Tax Rate

distortion, as well as the usual monopoly distortion in the intermediate goods

sector, the optimal policy in this model typically requires a subsidy to R&D ef-

fort.

Figures 4(a) and 4(b) show how steady-state tax revenue responds to the tax

rate for different values of � and �. Most significant about these graphs is that

variation in � is less important than variation in the tax rate, since the lines in

figure 4(a) are close together.

Figure 5 shows that as � increases, tax cuts are less likely to generate large

revenue gains, or even large offsetting tax base expansions. As � increases, rev-

enue gains are more likely, at least for lower values of �. While there is some

evidence that is relevant to the appropriate value of �, it is less clear how to cal-

ibrate � in conjunction with �. Are the stepping on toes effects important or

not? What is a reasonable guess at the long-run growth rate of the economy,

since the ratio �/(1− �) is important in determining this growth rate.

3.3. Dynamic Response to a Cut in Tax Rate

This section illustrates the response of the economy to a reduction in financial

income tax rates from 40% to 30%. As in the set-up above, there are no other
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Figure 4: Steady-State Tax Revenue as a Function of the Tax Rate
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Figure 5: Thresholds for Long-run Revenue Neutrality and Tax Base Neutrality
of a Tax Cut
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revenue in response to a tax cut. (That is, the economy is at the peak of the Laffer Curve.) These
curves are constructed based on a change in the tax rate from 40% to 30%.
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taxes. The economy starts on its balanced growth path, then faces a new, per-

manently lower tax rate. The dynamic response of the economy is computed

using the log-linearized version of the model.

Figures 6 and 7 show the responses of the two key allocation choices in the

economy, consumption and the allocation of labor between the two sectors.

Initially consumption drops around 10%, but quickly rises to be above the pre-

vious balanced growth path, eventually converging to the new steady-state with

consumption around 13% higher than it would have been without the tax re-

form. This cut in current consumption is a response to the suddenly higher

after-tax returns available. Consumers are willing to reduce current consump-

tion because, more than at the previous, higher tax rate, saving increases their

assets and future incomes.

The response of the labor share working in R&D is more subtle. Initially

the share working in R&D jumps up toward the new steady state. But after the

jump the share gradually falls before eventually converging to the new steady-

state value. This non-monotonic convergence is due to the dynamics of the

system being governed by two negative eigenvalues. For sA the signs of the co-

efficients on the corresponding eigenvectors are opposite, hence the initial drift

away from the steady state before convergence. Appendix B gives more details.

Figure 8 shows the price of patented inventions jumping up from its initial

balanced growth path, though it eventually converges to a level below its prior

trajectory.

The tax revenue generated for the government falls initially by over 25%. The

reduction is mainly because the tax rate is reduced, but also partly because of

the reallocation of labor toward the R&D sector. Tax revenue continues to grow

more slowly than its steady-state growth rate for some time, falling further be-

low the new balanced growth path to which it eventually converges. Figure 10

shows the dynamic response of the tax base. The tax base initially falls relative

to its counterfactual path in the old steady state. Eventually it expands to by

around 8% higher than it would have been otherwise. The 8% expansion in the
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Figure 6: Consumption Response to a Lower Tax Rate
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Figure 7: Labor Allocation Response to a Lower Tax Rate
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tax base makes up about 20% of the revenue lost from the reduction in the tax

rate.

The convergence of the tax base and revenue, of PA, and of the stock of de-

signs is slow. The gradual convergence is influenced strongly by the value of

�. The high value of � means that current investments in R&D stimulate future

productivity in the R&D sector, so that diminishing returns do not set in very

quickly in the accumulation of A by comparison with the accumulation of K.

4. Conclusion

This paper has investigated the dynamic response of tax revenue to changes

in the tax rate applied to financial income in a model of endogenous growth

due to research and development. The model modifies Romer (1990) and Jones

(1995a) to incorporate a tax on capital income, without distinguishing between

income derived from physical capital and pure profits that accrue to patent
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Figure 8: Response of the Price of a Patent to a Lower Tax Rate
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Figure 9: Response of Tax Revenue to a Lower Tax Rate
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Figure 10: Response of Tax Base to a Lower Tax Rate
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holders. The log-linearized model is used to estimate the dynamic response

of the economy to a tax cut.

Low values of � generate significant Laffer curve effects, where a reduction in

the tax rate stimulates the economy so much that tax revenue increases. How-

ever, such low values of � are inconsistent with evidence on profit shares and

markups. Instead, for more plausible parameter values, about 20% of a tax

rate reduction is self-financing. The convergence to this new balanced growth

path with a higher tax base can be very gradual, with the speed of convergence

slowed down by the strong spillovers of current research output to future re-

search productivity. These results suggest that widespread increases in tax rates

across the developed world need not lead to reductions or only small increases

in government revenue that will likely be needed to finance social services for

retiring baby boomers.
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A Log-Linearizing the Model

A1. Rate of Change

From the household’s Euler Equation, we know that

Ċt
Ct

= �((1− �v)rt − �) + n (28)

where

rt = ��
Yt
Kt

− � (29)

= ��
Ȳt
Kt

(1− sAt)1−� − � (30)

= ��e2t(1− e3t)1−� − � (31)

The capital accumulation equation is standard and gives

K̇t

Kt

=
Yt
Kt

− Ct
Kt

− � (32)

= e2t(1− e3t)1−� − e1t − �. (33)

Therefore,

˙1t = �((1− �v)(��e2t(1− e3t)1−�− �)− �) + n− e2t(1− e3t)1−� + e1t + � (34)

The second element of  changes according to the growth rates of Ȳ and K.

Note that maximum output can be written as

Ȳt = A
�

1−�
1−�
�

t

(
Kt

Ȳt

) �
1−�

Lt (35)



32 DEAN SCRIMGEOUR

so the growth rate of Ȳ is

�

1− �
1− �
�

Ȧt
At

+
�

1− �

(
K̇t

Kt

−
˙̄Yt
Ȳt

)
+ n (36)

This implies that

˙2t =
�

1− �
1− �
�

Ȧt
At
− �

1− �

(
K̇t

Kt

−
˙̄Yt
Ȳt

)
+ n− Yt

Kt

+
Ct
Kt

+ � (37)

=
�

1− �
1− �
�

e�3t+4t − �

1− �
˙2t + n− e2t(1− e3t)1−� + e1t + � (38)

= �
1− �
�

e�3t+4t + (1− �)(n− e2t(1− e3t)1−� + e1t + �) (39)

The rate of change of 4 is straightforward also.

˙4t = (�− 1)
Ȧt
At

+ �
L̇t
Lt

(40)

= −(1− �)e�3t+4t + �n (41)

The rate of change of 3t is equal to

˙3t =
1

1− �+ � e3t
1−e3t

((1− �v)(��e2t(1− e3t)1−� − �)− (1− �− �)n (42)

−�(e2t(1− e3t)1−� − e1t − �) (43)

+e�3t+4t(�− �1− �
�

+ (1− �) �

1− �
1− e3t
e3t

)) (44)

A2. Linearization

Linearize the transition equations above. Evaluate the Jacobian at the steady-

state values.
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∂ ˙1t

∂1t

= e1t (45)

∂ ˙1t

∂2t

= e2t(1− e3t)1−� (���(1− �v)− 1) (46)

∂ ˙1t

∂3t

= −(1− �)e2t(1− e3t)1−� (���(1− �v)− 1)
e3t

1− e3t
(47)

∂ ˙1t

∂4t

= 0 (48)

∂ ˙2t

∂1t

= (1− �)e1t (49)

∂ ˙2t

∂2t

= −(1− �)e2t(1− e3t)1−� (50)

∂ ˙2t

∂3t

= ��
1− �
�

e�3t+4t + (1− �)2e2t(1− e3t)1−� e3t

1− e3t
(51)

∂ ˙2t

∂4t

= �
1− �
�

e�3t+4t (52)

∂ ˙3t

∂1t

=
1

1− �+ � e3t
1−e3t

�e1t (53)

∂ ˙3t

∂2t

=
1

1− �+ � e3t
1−e3t

�e2t(1− e3t)1−�((1− �v)� − 1) (54)

∂ ˙3t

∂3t

=
1

1− �+ � e3t
1−e3t

( �(1− �)e2t(1− e3t)1−� e3t

1− e3t
(1− (1− �v)�) (55)

+e�3t+4t�(�− �1− �
�

+ (1− �) �

1− �
1− e3t
e3t

)− e�3t+4t �

1− �
1− �
e3t

)(56)

− �

1− e3t
e3t

1− e3t
1

1− �+ � e3t
1−e3t

˙3t (57)

∂ ˙3t

∂4t

=
1

1− �+ � e3t
1−e3t

e�3t+4t
(
�− �1− �

�
+ (1− �) �

1− �
1− e3t
e3t

)
(58)
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∂ ˙4t

∂1t

= 0 (59)

∂ ˙4t

∂2t

= 0 (60)

∂ ˙4t

∂3t

= −(1− �)�e�3t+4t (61)

∂ ˙4t

∂4t

= −(1− �)e�3t+4t (62)

We can write the linearized system as

˙(t − ∗) ≈ Γ(t − ∗) (63)

Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r∗+�
��
− g − � r∗+�

��
(���(1− �v)− 1) − r∗+�

�
(1− �) �n

1−�
���(1−�v)−1

�+ g−n
�
−(g−gA)

0

(1− �)( r
∗+�
��
− g − �) −(1− �) r

∗+�
��

�n
1−�

1−�
�

(��+ (1− �)(r∗ + �)) � 1−�
�

�n
1−�

x�( r
∗+�
��
− g − �) x� r

∗+�
��

((1− �v)� − 1) Γ3,3 Γ3,4

0 0 −�2n −�n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(64)

where r∗ is the steady-state interest rate from equation (12), and g is the

steady-state growth rate of output, capital and consumption; x = (1−�+ �2

1−�(1−
�) �n

1−�
1

(1−�v)r∗−(g−gA)
)−1, and

Γ3,3 = x(�(r∗ + �)
1− �
�

�n

1− �
1− (1− �v)�

(1− �v)r∗ − (g − gA)
+
�2�n

1− �
−

��2n

1− �
1− �
�

+ �((1− �v)r∗ − (g − gA)))

and

Γ3,4 = x

(
�2�n

1− �
− ��2n

1− �
1− �
�

+ �((1− �v)r∗ − (g − gA))

)
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A3. Solutions of the Linearized System

The linearized system of equations is solved in Octave using the eigenvalue de-

composition. Initial conditions for K and A generate the required boundary

conditions to obtain the particular solution. In every case, two eigenvalues are

negative (stable) and two positive. The non-monotonic dynamics of the system

are due to the fact that there are two negative eigenvalues that determine the

convergence behavior of the system, not one like in the Ramsey model.
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B Longer Horizon Responses to a Tax Change

This graph confirms that sA eventually converges to the new steady-state value.

The share of labor working in the R&D sector converges slowly and non-monotonically.

When the tax rate falls, sA initially jumps up toward the new steady-state value.

For several periods after that, as capital accumulates pushing up the marginal

product of labor in final output, labor migrates back to the final output sector.

With the passage of more time, the advance of the stock of designs increases

(perceived) R&D productivity so that workers are drawn back toward the R&D

sector.

Figure 11: Labor Allocation Response to a Lower Tax Rate
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